ЧТо такое TTL-замер вспышки | Foto-kadr.ru

ЧТо такое TTL-замер вспышки

Фотохитрости. Часть 9.

Сегодня снова про вспышку.

Фотохитрости. Часть 9. Снято на I-TTL BL FP SB-900

Немножко поясню как работает вспышка в автоматическом режиме. Обычно, автоматический режим вспышки в своем названии имеет приставку TTL. Расшифровывается очень просто — Through the lens — сквозь объектив (сквозь линзу). Это означает, что мощность вспышки настраивается с помощью света, который прошел через объектив.

Делается это довольно интересно: вспышка дает пробный импульс света. Обычно, мощность такого импульса составляет 1128 от полной мощности вспышки. Свет от вспышки отражается от того, что мы фотографируем, проходит через объектив и попадает на датчики экспонометра. Датчик передает значение мощности светового потока процессору камеры. Процессор долго думает, анализирует, и высчитывает, какая должна быть мощность основного импульса вспышки. Процессор знает, что первый импульс имел мощность, скажем, 1128, при этом экспонометр получил значения, которые не удовлетворяют экспозицию на 3 ступени, потому, процессор дает понять вспышке, что основной импульс должен быть мощней на 3 ступени, и соответствовать 116 мощности вспышки. Таким образом мы получаем хорошенький снимок с правильной экспозицией.

Самое интересное: в современных ЦЗК пробного импульса практически не видно. Такое ощущение, что вспышка сразу дает нужный импульс света. Но это не так, в режимах TTL импульсы идут очень и очень быстро один за другим серией в режиме стробоскопа. Человеческий глаз и человеческая реакция практически не замечает пробный импульс.

Пробный импульс часто называют «предвспых«. Предвспыхов может быть целое множество, а не один, и их мощность может быть разной. Честно говоря, я не знаю, какую мощность имеют предвспыхи моих вспышек Nikon SB-910, SB-900. Для Nikon, задержка между пробным и основным импульсом составляет порядка 0.4 с.

Со вспышкой. TLL через зонт, легкий блюр от командных импульсов

Важно: в обычных цифровых камерах система экспо замера не столь хорошо продумана, а процессоры не столь мощные, да и вспышки не могут давать большое количество «залпов» одновременно, потому, я легко замечаю предвспыхи на обычны цифровых камерах (мыльницах). Также, очень ярко видны пробные или управляющие импульсы встроенных и внешних вспышек моих камер и вспышек при работе в системе креативного освещения Nikon CLS.

При работе в TTL режиме я натолкнулся на пару интересных особенностей:

  1. Много людей имеют очень быструю реакцию, и при фотографировании со вспышкой они начинают жмуриться на первый импульс, а основной «рисует» их на снимке с прищуренными глазами.
  2. Предвспыхи заполняют фон лишним светом, это часто дает блюр (замыленность) в глазах людей. Лишние переотражения никому не нужны.
  3. Вспышка таким образом быстрее нагревается и сильней расходует заряд аккумуляторов.

Чтобы побороть такой недуг, TTL достаточно использовать вспышку в ручном режиме управления мощностью вспышки. При ручном управлении мощность вспышки нет пробных срабатываний, и вспышка сразу подает основной импульс. Прелесть такого режима в том, что:

  1. Моргание глаз полностью устраняется. Импульс моей вспышки Nikon SB-910 имеет длительность от 1800 до 140.000, за такое время ни один человек не успеет моргнуть. Да, человек моргает, но уже после вспышки, а свет лампы вспышки «рисует» на фотографии человека с открытыми глазами.
  2. Уменьшается блюр в глазах. В студиях все работают со вспышками с ручным управлением мощностью, проблемы блюра в глазах практически нет. Правда, там другая проблема, в глазах ярко видны сами осветительные приборы, часто прямоугольной формы, что делают глаза человека похожими на глаза кошек (не естественными).
  3. Перезарядка длится быстрей, не тратится лишняя энергия. Возможно, даже увеличивается ведущее число, так как вся доза света подается сразу.

Вот такие вот преимущества ручного управления вспышкой.

TTL замер вспышки

Сегодня большинство зеркальных фотоаппаратов измеряют яркость снимаемой сцены с помощью экспозамера называемого TTL-замер. Используя TTL замер в работе со вспышкой, вы предоставляете фотокамере возможность определять необходимые настройки для создания красивого изображения. TTL замер вспышки в определении необходимых настроек не основывается исключительно на информации о внешнем освещении, на настройки влияют и другие факторы. Существуют два основных способа замера для вспышки. Один из них заключается в измерении отраженного света. Второй метод основывается на предварительной вспышке, результат работы которой, используется для расчетов. Эти два метода используются в трех режимах замера вспышки (TTL, автоматический TTL и оценочный TTL ), TTL и автоматический TTL (A-TTL) используют первый метод , оценочный TTL (E-TTL) использует второй метод. Следует отметить, что вспышка E-TTL поддерживает высокоскоростную синхронизацию вспышки. Теперь, давайте обсудим три режима более подробно.

Режим замера TTL

При использовании стандартного TTL замера вспышки камера использует обычный режим замера экспозиции, используя встроенную память камеры. TTL замер вспышки измеряет мощность вспышки света, отраженной от предмета. Эту информацию камера получает через объектив. В таком случае, если вы используете защитный или любой другой фильтр, потеря света, вызванная наличием дополнительного стекла, будет учтена. TTL изменяет экспозицию вспышки благодаря использованию специального датчика, который измеряет мощность вспышки, отраженной от поверхности датчика изображения во время её работы. Данный TTL замер не использует предварительную вспышку для расчета экспозиции.

Автоматический TTL-замер

В автоматическом режиме TTL-замера, камера выполняет те же функции, что и в режиме TTL замера. То есть, камера использует информацию о количестве света, определенного специальными датчиками. Кроме того, в автоматическом режиме замера, вспышка так же использует предварительный импульс света, помогающий в расчете соответствующей диафрагмы в зависимости от расстояния до объекта, которое должен пройти свет, что бы осветить его. Этот импульс света включается при половинном зажатии кнопки спуска затвора. Основная вспышка включится когда кнопка будет нажата полностью. Кроме того, если вы установили камеру в программный режим и используете замер A-TTL , камера сравнивает и оценивает информацию со стандартной системы замера экспозиции и автоматического TTL, а затем выбирает большее значение диафрагма, для обеспечения более точной экспозиции и увеличения резкости и глубины резкости.

Оценочный TTL замер

Оценочный TTL замер использует другую технологию для определения необходимых настроек. При использовании замера E-TTL, камера активирует предварительную вспышку, которая отличается от тех импульсов, которые используются в режиме A-TTL. Вспышка в оценочном режиме замера TL активируется непосредственно перед открытием затвора (не тогда, когда кнопка спуска затвора нажата наполовину, как в A-TTL). Таким образом, значения экспозиции рассчитывается за долю секунды до основной вспышки, а не во время измерения окружающего света. Кроме того, информация от предварительной вспышки будет проанализирована на основе датчика TTL, а не внешнего датчика на вспышке. Это делает режим E-TTL более точным. Человеческий взгляд может даже не уловить импульс света от предварительной вспышки E-TTL, так как он запускается чрезвычайно быстро.

Заключение

Система измерения TTL стала большой находкой для фотографов, этот режим способен невероятно точно и быстро определить необходимую мощность света вспышки. Теперь, в эпоху цифровой фотографии, вы кроме всего прочего, можете сразу же посмотреть на получившийся результат, и в случае необходимости сделать некоторую корректировку настроек и попробовать сфотографировать еще раз. Если снимок переэкспонирован (или недоэкспонирован) вы можете перенастроить вспышку и продолжить работу. Если вы научитесь так же понимать различия между режимами TTL замера, ваша работа станет более продуктивной и творческой. Умение ориентироваться в разных настройках вспышки позволяет создавать более качественные фотографии.

Про фото MYRAW.RU

Все про фотографию и фототехнику: статьи, обзоры, фотостоки, тесты, новости и т.д.

Что такое TTL замер и зачем он нужен

TTL — Through-the-lens — сквозь линзы (англ.) — режим работы вспышки, еще часто называется автоматическим режимом, т.к. сама вспышка, предварительным импульсом определяет мощность импульса для получения фотоснимка. Т.е. встроенный датчик экспозамера вспышки, или встроенный датчик экспозамера фотоаппарата определяет мощность импульса вспышки при фотографировании.

Если еще проще сказать, то режим TTL снимает часть работы с фотографа. К примеру, мы фотографируем какое-то мероприятие. Ставим (крепим) вспышку Nikon SB-700, настраиваем фотоаппарат режим съемки A (приоритет диафрагмы). Включаем вспышку, режим TTL. Все, остальное, что нам нужно делать, это менять только головку вспышки (и то при желании). Автоматика вспышки сама подберет силу импульса, настроит зум вспышки и т.д. в зависимости от настроек фотоаппарата (ISO, диафрагма, выдержка и т.д.) и условий съемки.

Здесь нужно помнить, что не стоит сильно закрывать диафрагму, т.к. мощности вспышки, может не хватить для освещения помещения. Поэтому, я рекомендую, при фотографировании со вспышкой в помещении, стараться максимально открывать диафрагму, и немного подымать ISO. Тогда мы можем в ТТL режиме бомбить неплохие репортажные серии…

На сегодняшний день, существуют несколько видов TTL режимов:

  • простой TTL — используются экпсозамер камеры без предварительного импульса
  • автоматический TTL — предварительный импульс, затем автоматический подбор настроек для настройки мощности вспышки
  • оценочный TTL — самый популярный сегодня тип экпозамера вспышки. Предварительный импульс, который рассчитывает настройки, выполняется за долю секунды, и зачастую даже не виден не вооруженным глазом. Перед каждым основным импульсом вспышки, будет срабатывать оценочный TTL экспозамер.

Каждый производитель вспышек придумывает разные аббревиатуры для своих TTL. У Nikon i-TTL, у Canon A-TTL, E-TTL, E-TTL II и т.д. В целом, суть от этого не меняется. Главное, чтобы камера корректно работала с данной системой.

Наличие встроенного TTL вспышки, к примеру Yongnuo, будет корректно работать на фотоаппаратах Canon, а вот на фотоаппаратах Nikon будет только ручной режим. Потому, если покупаете не фирменную вспышку, то уточняйте у продавца для какой системы она предназначена. Так, к примеру, вспышка Yongnuo Digital Speedlite YN560-III (без TTL, ручная) одинаково хорошо работает, как на фотоаппаратах Nikon, так и на фотоаппаратах Canon. Т.к. силу импульса, зум и т.д. мы настраиваем в ручную, кнопками на самой вспышке.

Итак, по итогу, TTL — это несомненно большой плюс, чем минус. Особенно, если речь идет о репортажной съемке, где настраивать отдельные девайсы просто нету времени. Другой вопрос, что TTL и фирменные вспышки стоят дорого, поэтому, я рекомендую, обратить внимание, на таких производителей как Yongnuo, SIGMA и т.д. Цены здесь почти в два раза ниже фирменных. Главное, при покупке, не спутать системы, и сказать продавцу, что у вас фотоаппарат Nikon D7000, или Canon EOS 650 и т.д.

В ЧЕМ РАЗНИЦА МЕЖДУ СЪЁМКОЙ В РЕЖИМЕ TTL И В РУЧНОМ РЕЖИМЕ?

Мы работали на выездной съёмке, во время которй мы фотографировали исполнительницу Минди Гледхилл и её гастрольный автобус. Это был прекрасный солнечный день, поэтому одна сторона автобуса была полностью освещена. Это послужило нам отличной возможностью протестировать работу наших выносных вспышек Profoto B1 и В2 в режиме TTL.

TTL — это аббревиатура термина замера света вспышки через объектив ( «Through-The-Lens»). Установив на камеру либо Air Remote TTL-C, либо Air Remote TTL-N, фотограф может настроить осветительные приборы, включить их и выполнить пуск, чтобы получить идеальную экспозицию с помощью вспышек. Затем, нажав несколько кнопок, фотограф может отрегулировать экспокоррекцию TTL прямо на самой камере, а при работе с разными группами, может увеличить и уменьшить мощность этих отдельных групп ( A, B, C) независимо от камеры в режиме TTL или в ручном режиме.

СХЕМА ОСВЕЩЕНИЯ

Наша основная схема освещения включала в себя вспышку В2 с софтбоксом системы выносной вспышки ( OCF Softbox 2×3) в качестве основного света, ещё одну В2 с зум-рефлектором для освещения волос, и две выносные вспышки В1 для освещения затенённой стороны гастрольного автобуса за Минди. Кроме того, чтобы удостовериться, что мы полностью можем контролировать освещение нашего объекта съёмки, мы использовали золотистый/белый складной отражатель в качестве флага, чтобы оттенить её от солнца. Наш основной свет, и свет, падающий на волосы, были установлены слева, чтобы подстроиться под направление солнечного света. Фоновые осветительные приборы, свет которых попадал на автобус, были установлены только с целью тонко заполнить тень спереди автобуса.

РЕЖИМ TTL

Наш первый снимок со вспышкой был сделан полностью в режиме TTL без экспокоррекции света вспышки. Наши осветительные приборы были разбиты на три группы. А: основной свет. В: Свет, падающий на волосы. С: Фоновые осветительные приборы спереди автобуса. Даже с предельно ярким обманывающим светом со стороны автобуса, первый кадр с TTL был очень близк к тому, что нам было нужно. Основной свет был идеальным, а свет, падающий на волосы оказался на 2/3 ступени ярче, чем я бы хотел. Единственная группа, которая меня не устраивала — это были фоновые осветительные приборы спереди автобуса. С технической точки зрения было правильно, что вспышки пытались подстроить свою экспозицию под остальную часть автобуса, но это привело к тому, что передняя часть автобуса оказалась слишком яркой, чтобы быть похожей на естественную тень. Но, в конечном счёте, система Profoto AirTTL System создала очень точную изначальную экспозицию. Которую теперь надо было скорректировать в соответствии с нашими предпочтениями.

ПЕРЕКЛЮЧЕНИЕ В РУЧНОЙ РЕЖИМ

Система Profoto Air Remote TTL-C позволяет полноценное управление TTL и ручное управление вспышками в трёх группах ( A, B и C), и ручной пуск вспышек в трёх дополнительных группах ( D, E и F). В нашей схеме освещения использовались только первые три группы. После нашего первого тестового снимка, мы оценили полученное изображение и определили, что нужны некоторые ручные корректировки. Поэтому мы переключили Air Remote TTL-C из режима TTL в ручной режим и начали выполнять наши корректировки, нажимая кнопки увеличения и уменьшения можности на пульте дистанционного управления для групп. Группа для освещения волос В была на 1/3 ступени слишком яркой, поэтому мы нажали на кнопку уменьшения мощности три раза. ( Каждое нажатие соответствовало уменьшению на 0.1 ступени). Наша группа С для фонового освещения автобуса была на 2 ступени слишком яркой, поэтому мы нажали на кнопку уменьшения мощности два раза, каждый раз долго удерживая её нажатой. ( Каждое продолжительное нажатие соответствует полной ступени). Как только настройки каждой вспышки в соответственных группах были изменены по нашей команде через пульт дистанционного управления, мы начали съёмку. Результаты оказались именно такими, как мы хотели.

ЗАКЛЮЧЕНИЕ

Использование выносных вспышек B1 и B2 в режиме TTL делает стадию тестирования освещения снимка невероятно эффективной. После получения начального расчёта экспозиции через TTL, я быстро переключил Air Remote TTL-C в ручной режим и выполнил необходимую регулировку мощности. И решение по освещению затем принимается в процессе съёмки. Сейчас я ловлю себя на том, что использую режим TTL некоторым образом почти на каждой фотосъёмке, которую я выполняю, потому что TTL помогает мне быстрее сориентироваться и позволяет уделить больше времени и внимания на другие аспекты съёмки.

Canon EOS A-TTL, E-TTL и E-TTL II

При работе с накамерными системными вспышками, наиболее корректным методом экспонометрии является замер света, прошедшего через объектив фотокамеры (от англ. Through The Lens«через объектив»). В таком случае автоматически учитываются все поправки на светосилу объектива, используемые светофильтры и насадки, а угол замера – также автоматически согласовывается с углом зрения объектива. Поэтому современные системы управления вспышкой построены именно на принципе TTL-замера. Естественно, автоматический TTL-замер не лишён недостатков, и каждая фирма, разрабатывая и совершенствуя свою собственную систему управления вспышкой, шла по своему пути.

В основе работы вспышек Canon EOS system лежит технология TTL , которая включает в себя модуль с датчиками, расположенными в нижней части внутреннего пространства зеркальной камеры. Датчики измеряют освещённость поля кадра в момент съёмки. Как только экспозиция (произведение освещенности и времени экспонирования) поля кадра достигает пороговой величины, электроника фотоаппарата прерывает импульс вспышки.

На сегодняшний день существует три поколения системы EOS flash system: A-TTL, E-TTL и E-TTL II.

[dropcap]A-TTL[/dropcap](англ. Advanced-Through The Lens) — первая реализация технологии EOS flash system, впервые появившаяся в камере Canon T90 1986 года. Принцип работы A-TTL заключается в использовании дополнительной инфракрасной лампы, установленной на неподвижной части корпуса вспышки. Там же находится датчик освещённости, который измеряет количество света, отраженное от объекта съёмки после импульса инфракрасной вспышки.

В момент нажатия кнопки спуска затвора инфракрасная вспышка выдаёт импульс, направленный параллельно оси объектива. Датчик, расположенный на вспышке, производит замер отраженного от объекта света и передаёт данные (выдержка и диафрагма) в фотоаппарат для расчёта экспозиции и мощности основного импульса вспышки. Фотоаппарат, кроме того, производит замер общей освещённости поля кадра без вспышки (до инфракрасного импульса).

Данные, полученные в результате двух замеров, сравниваются, и при необходимости производится коррекция предварительных расчётов экспозиции. После этого открывается затвор и производится экспонирование. В это время срабатывает основная вспышка и TTL-датчики замеряют освещённость поля кадра на основе количества света, отраженного от плёнки или матрицы. При риске пересвета импульс вспышки отсекается.

Недостатки A-TTL замера

В случае, если объект в кадре имеет высокую отражающую способность (например, в кадре человек рядом с зеркалом), высока вероятность ошибки в расчётах мощности основного импульса и экспозиционных данных. Кроме того, ошибки могут возникать в том случае, если основной импульс производится не напрямую в объект съёмки, а в потолок или отражатель. A-TTL вспышки не работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с.

[dropcap]E-TTL[/dropcap](англ. Evaluative-Through The Lens) — развитие технологии EOS flash system, в отличие от A-TTL предусматривающее использование основного излучателя для предварительной вспышки. Таким образом значительно сокращается вероятность ошибок расчёта экспозиции и мощности импульса при использовании отражающих свет поверхностей, если головка вспышки направлена не на объект съёмки. Кроме того, также как и в A-TTL, встроенный в камеру сенсор при необходимости прекращает работу вспышки.

Для расчёта экспозиции и мощности основного импульса используется тот же сенсор, что и для замера освещённости в обычных условиях (а не отдельный, как в A-TTL). E-TTL вспышки работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с, вплоть до 1/8000 с (в зависимости от возможностей фотоаппарата). Если в режиме обычной синхронизации сначала полностью открывается затвор, после чего вспышка при открытом затворе экспонирует кадр, то в режиме сверхскоростной синхронизации вспышка выдаёт высокочастотный, растянутый по времени импульс, который дольше, чем время, на которое открывается затвор и состоит из множества коротких импульсов. Совокупная мощность импульса при таком способе работы меньше, чем при обычном режиме работы.

Последовательность замера экспозиции в E-TTL следующая:

1) при полунажатии на спуск производится замер яркости от постоянного освещения,
2) включается предвспышка небольшой мощности и сенсоры экспозиции замеряют новое значение яркости,
3) из измерения яркости со вспышкой вычитается значение первоначального замера без вспышки,
4) в момент полного нажатия на спуск происходит еще один замер яркости от окружающего света без вспышки (чтобы учесть возможность перекадрировки) и вычисляется требуемая величина импульса вспышки,
5) производится экспонирование, срабатывает вспышка.

Если съемка производится в режиме автофокуса, расчет экспозиции производится с учетом положения фокусировочной зоны. В случае ручного фокуса акцент при расчете экспозиции делается на самую «яркую» зону.

E-TTL впервые появилась в 1995 году в камере Canon EOS 50.

[dropcap]E-TTL II[/dropcap](англ. Evaluative-Through The Lens 2) — последний на сегодня механизм взаимодействия камеры и вспышки, впервые появившийся в камере Canon EOS-1D Mark II в 2004 году. В отличие от предшественницы, E-TTL II использует все доступные зоны замера экспозиции, а также учитывает расстояние до объекта.

В E-TTL II кроме данных об экспозиции без оценочного импульса и с ним, учитывает и дистанцию до объекта съемки, которая «сообщается» сфокусированным на объект объективом. Зачем это нужно? Приведем один возможный пример. Может случиться так, что объект занимает небольшую часть кадра и E-TTL попросту не учтет его и вся экспозиция будет рассчитана под окружающий фон. А если положение объекта в пространстве задано, то в экспозицию будет внесена нужная корректива.

Вспышки

Ответы

«Красные глаза» появляются в случае отражения света вспышки от кровеносных сосудов расположенных на глазном дне. Эффект возникает из-за расширившихся в темноте зрачков. Принцип работы режима уменьшения эффекта «красных глаз» заключается в дополнительном освещении глаз перед основным импульсом. Зрачок сужается, что предотвращает появление эффекта. Иногда стандартного освещения, которое дает режим уменьшения эффекта «красных глаз» недостаточно, тогда «красные глаза» на фотографии остаются. Чтобы быть гарантированно защищенным от появления этого эффекта рекомендуется, чтобы модель в течение приблизительно 20-30сек. смотрела на горящую лампочку или открытое окно. Используя внешнюю вспышку рекомендуется выносить ее дальше от оптической оси объектива или работать с отраженным светом, направив вспышку в потолок или стену.

К оглавлению Что такое и когда нужна высокоскоростная синхронизация со вспышкой?

Синхронизация на коротких выдержках (короче 1/300сек.) необходима при съемке портретов на ярком солнце. Для разных систем фотоаппаратов она получила различные названия: режим FP (Canon, Nikon), HSS (Minolta). Т.е. высокоскоростная синхронизация позволяет избежать переэкспонирования кадра, одновременно работая с высокочувствительной пленкой, открыв диафрагму и подсвечивая тени вспышкой.

К оглавлению Что такое и чем отличаются TTL, A-TTL, E-TTL и E-TTL II?

TTL (Through-The-Lens) – система измерения света через объектив, в том числе и света вспышки. В момент экспонирования свет, отраженный от объекта съемки, проходит сквозь объектив и, отразившись от пленки, попадает на датчик. Датчик, направленный на пленку, измеряет количество света и посылает информацию в центральный процессор. По достижении оптимальной экспозиции центральный процессор прерывает импульс вспышки и закрывает затвор. Принципиальная схема работы системы TTL со вспышкой приведена ниже.

A-TTL (Advanced Through-The-Lens) – передовая система измерения света через объектив. Используя систему измерения света вспышки A-TTL в фотоаппаратах, работающих в программном режиме, рабочее значение диафрагмы вспышки устанавливается на основании сравнения двух измерений. Во-первых, измеряется окружающий свет и устанавливается значение диафрагмы для него. Затем вспышка делает несколько инфракрасных импульсов для измерения расстояния до объекта съемки. В соответствии с расстоянием до объекта вычисляется еще одно значение диафрагмы. После сравнения двух полученных значений устанавливается рабочее значение диафрагмы.

E-TTL (Evaluative TTL) – улучшенная система измерения света через объектив. Для измерения света в этом режиме фотоаппарат использует многозонный датчик, связанный с фокусировочными точками, тот же что используется и при измерении постоянного освещёния. Перед основным импульсом вспышка делает предварительный, практически невидимый для глаза импульс, по которому вычисляется экспозиция. Также измеряется окружающий свет. После чего сравниваются результаты измерений, и вычисляется оптимальная экспозиция.

E-TTL II — система которая помимо работы по методу E-TTL учитывает расстояние от фотокамеры до объекта съёмки, на который сфокусирован объектив. Информация о дистанции позволяет более точно скорректировать мощность импульса. Система E-TTL II работает только в том случае, если используется объектив способный сообщать камере информацию о дистанции съёмки.

Фотодело. Что такое E-TTL

Основой технологии является измерение отражённого от снимаемой сцены света предварительного импульса основной лампы фотовспышки, мощность которого заранее известна. Дополнительный модуль с инфракрасным излучателем во вспышках серии EX не принимает участия в измерении экспозиции, а используется только для вспомогательной подсветки автофокуса и управления внешними вспышками.

Важным отличием от предыдущей технологии A-TTL является момент начала измерения: если в старых вспышках дальномер срабатывал при поджатии спусковой кнопки, то в новых предварительный импульс излучается непосредственно перед подъёмом зеркала.

Интервал между измерительным и рабочим импульсами вспышки E-TTL настолько мал, что оба воспринимаются глазом, как один общий. При этом вместо дополнительного сенсора камеры, улавливающего отражённый от плёнки свет, используется основной TTL-экспонометр, предназначенный для измерения постоянного освещения. В цифровых фотоаппаратах Canon используется только такая технология, поскольку системы типа TTL OTF неработоспособны из-за низкой отражательной способности фотоматриц.

Главным достоинством новой системы является измерение света вспышки основным TTL-экспонометром, что даёт возможность осуществлять центровзвешенный или матричный замер импульсного освещения с такой же точностью, как и непрерывного. Кроме того, алгоритм оценочного измерения учитывает активную точку автофокуса, отдавая приоритет окружающей её зоне.

Предварительное измерение происходит через объектив и автоматически учитывает большинство факторов, недоступных внешнему сенсору: кратность установленного светофильтра, выдвижение объектива и его поле зрения. Последовательность работы системы содержит несколько этапов, и начинается с измерения экспозиции непрерывного освещения при поджатии спусковой кнопки. После её полного нажатия излучается измерительный импульс вспышки, отражённый свет которого также измеряется TTL-экспонометром. Результат измерения используется для вычисления мощности рабочего импульса, значение которого сохраняется в памяти микропроцессора. Как и в системе A-TTL, значение диафрагмы выбирается на основе сопоставления результатов измерения непрерывного и импульсного освещения.

При достаточном уровне непрерывного освещения включается «режим заполняющей вспышки», снижающий мощность импульса на 1/2 — 2 ступени для сохранения естественного светотеневого рисунка. Сразу после измерительного импульса поднимается зеркало и открывается затвор, а вспышка излучает импульс в соответствии с записанным в памяти процессора значением его мощности, вычисленным перед съёмкой.

E-TTL впервые реализована в 1995 году в малоформатном фотоаппарате Canon EOS 50 и вспышках серии EX, обладающих частичной обратной совместимостью с фотоаппаратурой предыдущего поколения, рассчитанного на вспышки EZ. Первым цифровым фотоаппаратом, поддерживающим систему, стал Canon EOS D30. Плёночные фотоаппараты Canon, принадлежащие к группе «А», как и цифровые, поддерживают систему E-TTL, полностью заменившую A-TTL. Фотовспышки серии EX также обеспечивают синхронизацию на коротких выдержках и излучение моделирующего света, состоящего из серии коротких импульсов. Последняя функция применяется для визуальной оценки световой картины, получаемой от дополнительных вспышек этой же системы, управляемых дистанционно по инфракрасному каналу.

Главным недостатком системы E-TTL считается наличие предварительного импульса вспышки, на который могут реагировать снимаемые люди. Несмотря на короткий интервал между вспышками, он вполне достаточен для того, чтобы человек успел моргнуть и оказаться на снимке с закрытыми глазами, особенно при синхронизации «по второй шторке». Та же проблема актуальна при съёмке диких животных. Предотвратить эффект можно использованием экспопамяти вспышки (англ. Flash Exposure Lock, FE Lock, FEL), излучающей измерительный импульс в момент своего включения. В этом случае в момент съёмки производится только рабочая вспышка.

Ещё одна проблема связана с использованием светосинхронизатора ведомых студийных вспышек и флэшметров, срабатывающих от измерительного, а не рабочего импульса. В результате ведомые вспышки запускаются раньше открытия затвора, а флэшметр выдаёт ошибку измерения. Проблема устраняется применением усовершенствованных световых ловушек, срабатывающих с задержкой или от второго по счёту импульса.

E-TTL II (англ. Evaluative-Through The Lens 2) — на 2016 год новейшая технология Canon взаимодействия камеры и вспышки, впервые появившаяся в фотоаппарате Canon EOS-1D Mark II в 2004 году. В отличие от базовой системы, E-TTL II использует все доступные зоны матричного замера экспозиции, а также учитывает расстояние до объекта съёмки, получаемое от датчика положения кольца фокусировки объектива. Вычисленная на основе ведущего числа и дистанции фокусировки мощность вспышки используется для корректировки значения, полученного измерением предварительного импульса, исключая грубые ошибки при съёмке небольших объектов на удалённом светлом фоне. Кроме того, предотвращаются ошибки при изменении композиции снимка после фокусировки объектива, происходящие из-за приоритета выбранной точки фокусировки при измерении вспышки.

Влияние ярких отражений на точность измерения также практически исключается.

Дистанция не учитывается в трёх случаях: при повороте головки вспышки для съёмки в отражённом свете, в режиме макросъёмки и при работе с дополнительными вспышками. Информацию о дистанции фокусировки передают в камеру большинство объективов Canon EF, но встречаются исключения, например Canon EF 50/1,4 USM и ранняя версия Canon EF 85/1,2 L USM.

Поддержка системы зависит только от модели фотоаппарата: все фотовспышки серии EX пригодны для работы в режиме E-TTL II.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]